Buissaippe paijdwi 10§ UWN|Od Y Ul PaPNOUL 318 SuondNJISUl apow Buy

0492 = a)Ag

013z = g

ol Jagsues)

W 30 uawajdwo)
HO 2AISN|OX3 ueajoog

00

0

-
W
2

SS3Jppe J01B|NWNIJY 310N
HO @Aisnjaut ueajoog +

Jautod yoeis Aq o1 pajuiod uonedo} Alowaw Jo sjuauo) ISy

- “ONV uesjoog -

snuiw snawyYy -
snid onawyuly +

(iewsoapexay) apod 404

d10) ej0i010 ASBUN0),

£1°01 21Ge L Ol Sal0Ul00}) 39S}

i EE A, &

7

L 9%

INOILVYH3dO JIL3WHLIHY NVv31008 d0 d0 d0 d0 d0 OJINOW3NW SNOILYH3dO H3LNIOd
Q3ndi aNLIX3 X3ANI 103dHid G3WNI

S3AOW ONISS3HaAaVY
SNOILONYLISNI NOLLYININYIN ¥OVLS ANV YILSIDIHY XIANI

ORGANIZATION

COMPUTER

MICROPROCESSOR

‘€1°01 3iqeL ol wSoEo.& 29G4

11S31 HONVY8 d0 JINOWINW
a3indni aNLX3 X3aNI JAILVIY
S3AOW SNISsS3Yaav
SNOILONYLSNI HONVHE ANV dINNT S1°0L 3718VL

504

COMPUTER
ORGANIZATION

TABLE 10.16 CONDITION CODE REGISTER BITS

The programmer wrote the columns from Label to the right. The assembler
generated the leftmost two columns. ‘

The first instruction, CLRA, simply clears accumulator A. The LDAB in-
struction gets the number of bytes in the table from location 50,6 in the memory
and stores that number in register B. Notice that in 6800 assembly language a
hexadecimal number is designated by placing a $ in front of the number. Also
notice that the 50 occurs in the second memory address of the instruction word,
and the addressing mode is immediate.

The LDX #8$01 loads the value 1 in the index register. The symbol # tells
the assembler to use this as an actual number, not as an address. The resulting
immediate address operand requires 2 bytes since the index register contains 16
bits. Also note that the least significant byte is the last byte in the 3-byte instruction
word.

The ADDA $50, X is an addition instruction in indexed addressing mode.
In the 6800 the indexed mode is indicated by the X in the statement. The $50 (for
hexadecimal 50) gives the offset. The actual address used is formed by adding the
offset to the contents of the index register. In this case, the first time through the
loop, the address will be the offset 50,4 plus 1, or 51,6. Notice that the offset is
loaded in the memory following the OP code and is a single byte. (A check of the
OP codes will indicate that AB is the OP code for an indexed-mode addition.)
After this instruction is executed, accumulator A will contain the number at location
51.

The INX adds 1 to the index register, which will now contain 2. The DECB
decrements register B and also sets the status bits. In particular, if B becomes 0,
the Z status bit will be set to a 1, and this will indicate that the entire table has
been processed.

The BNE LOOP instruction tests the Z bit and branches if Z is not a 1. When
Z becomes 1, the program control ‘‘falls through’’ the BNE to the STAA instruc-
tion.

' TABLF 10.17 CONDITION CODF REGISTER
' MANIPULATION INSTRUCTIONS

BOOLEAN ARITHMETIC
OPERATIONS MNEMONIC OP CODE OPERATION

TABLE 10.18 A 6800 PROGRAM

MEMORY
ADDRESS CONTENTS LABEL OP CODE OPERAND COMMENTS

CLEARA
; | GET. m OF ENTRIES
© #801 LOADINDEX REGISTER

50
CE
0o
01
m i ”:‘t:.w/:’ S G e
5A
28
FA
7

ks "NCREMEN%?‘R: s

When the program control loops back the first time, the index register plus
the offset now equals 52, so the number at that address will be added into accu-
mulator A by the ADDA $50, X instruction. This process continues with numbers
at successive locations being added into A until the table end is reached. Then the
STAA $OF instruction stores the sum at location F in the memory.

Subroutine calls for the 6800 are made by a JSR (jump subroutine) instruction
which pushes the program counter’s contents (2 bytes)'? on top of the stack (also
adjusting the stack pointer). When an RTS (return from subroutine) instruction is
given, the address (2 bytes) on top of the stack is placed in the program counter,
causing return to the instruction after the initial JSR.

An example of a subroutine is shown in Table 10.19. The ORG $30 is an
assembler directive which tells the assembler to place the subroutine starting at
location 30, in the memory. The purpose of this subroutine is to find where in a
table in the memory a character lies. The parameters are passed'? as follows: (1)
the address of the end of the table must be in the index register before the subroutine
is entered, (2) the number of entries in the table is placed in accumulator B, (3)
the character to be searched for must be in accumulator A.

12After the program counter has already been updated to point to the next instruction.
133ee description of the 8080 for a discussion of parameter passing.

TABLE 10.19 6800 SUBROUTINE FOR TABLE LOOKUP

LABEL QP CODE OPERAND COMMENTS

o L ORG $30 SET ORIGIN

- SRCH <o CMPA C0X " CHAR = TABLE ENTB’I?

o BEQ * YES QUIT

: ' INCREMENT IR

- DECREMENT B

- TEST.FOR.END
»RETURN TO CALLER

505

6800
MICROPROCESSOR

COMPUTER
ORGANIZATION

TABLE 10.20 CALLING 6800 SUBROUTINE
OP CODE

The subroutine is entered at SRCH, where the CMPA 0, X instruction causes
the byte at the memory address given by the index register (notice that the offset
is 0) to be compared with accumulator A. If they are equal, the Z status bit will
be set to 1, and the BEQ FINIS instruction will test this instruction and branch to
FINIS. Otherwise, the index register will be decremented so that it points to the
next lowest entry in the table. Accumulator B will then be decremented by the
DECB, and if this sets the Z flag to 1, indicating a 0 in B, the search will be ended.
Otherwise, the return to SRCH will cause the next entry in the table to be compared
with the character in accumulator A. This will be repeated until all table entries
have been examined.

The RTS will cause a return to the calling program with accumulator B
containing the number in the table at which the matched character lies.

A possible calling program segment is shown in Table 10.20. LDX loads the
index register with the address of the end of the table, which is assumed to be at
ENDTA. The number of table entries is assumed to be 20,,, and LDAB loads B
with that value. (No $ symbol means decimal.) JSR causes a jump to the subroutine,
and the jump back from the subroutine using RTS will cause the STAA instruction
to be executed.

When a set of chips for a microprocessor of this kind is used with a fixed
program, such as in an industrial controller, the program is generally developed
by using system software which is provided by the chips’ manufacturer and soft-
ware vendors and placed in a ROM memory. A ROM memory can be addressed
and used just like a RAM memory when it is connected to a microprocessor CPU
(except, of course, that we cannot write into a ROM). It is common practice to
write the program for the microprocessor and assemble this program using another
computer. The program is sometimes tested using this larger computer, which runs
it on a simulator. The larger computer then produces a tape which is used to set
up the ROM in which the program will be stored.

Considerable effort is made by the manufacturers of the microprocessor chips
to facilitate programming the microprocessor, preparing the ROMs, and loading
the RAMs, when required. Sometimes higher-level languages are provided, en-
abling programs to be written in Fortran, PL/M, or other compiler languages,

which are then translated into the program for the microcomputer.

PDP-11

10.13 The PDP-11 series includes minicomputers and microcomputers. These
computers have 16-bit words, each containing two 8-bit bytes (see Fig. 10.19).
Notice, however, that each address in memory contains 1 byte. The eight general
registers are 16 bits each, and a computer word normally has 16 bits.

Location
00000
00001
00002
00003

Word 0

Word 1

017775

017776
017777 | - High

PDP-11

FIGURE 10.19

The PDP-11 reads from and writes into external input-output devices in the
same manner that it reads from and writes into high-speed memory. Each input-
output device is simply given an address in memory. To read from an address, and
in turn an input-output device, the computer uses not a special input-output instruc-
tion, but a MOVE instruction, an ADD instruction, or whatever is desired. This
means that status registers must be used by the CPU (as in Chap. 8) to determine
whether a device can be written into, has something to read, etc.

There is a complex interrupt structure in the PDP-11 where the CPU contin-
ually puts a status number on three wires of its bus. Each external device has a
status number, and if that status number is greater than the CPU status number, it
has the right to interrupt. Setting a CPU’s status number to its maximum stops all
interrupts. The CPU’s status number is set under program control and can be
changed as the program operates.

Interrupts are ‘‘vectored’’ (see Chap. 8 and the description of the 8080, Sec.
10.11) in that an interrupting device places data (an interrupt vector) on the bus
lines which enable the CPU to transfer control directly to a service program for
the interrupting device.

The general registers of the PDP-11 are shown in Fig. 10.20(a). Notice that
register Ry is a stack pointer and R, is the program counter. These can be used and
addressed just as the other general-purpose registers, making for interesting instruc-
tion variations.

The CPU in the PDP-11 includes a status register, as shown in Fig. 10.20(b).
This status register contains the priority number just discussed, which is placed on
the bus in bits 5 to 7. Bits 11 to 15 in Fig. 10.20(b) are used by the operating
system to control program operations in the 11/45, one of the larger PDP-11
models, and are not discussed here. (Details are given in the manuals listed in'the
Bibliography.) .

The N, Z, V, C bits in the status word are set and reset as instructions are
operated. For gxample, the N bit indicates when a result is negative. If an ADD
instruction is performed and the result is negative, the N bit will be set to a 1;

Memory organization
of PDP-11.

COMPUTER
ORGANIZATION

FIGURE 10.20

Kernel
stack pointer

Program
counter

Gzneral
register
set 0
(a)

Processor status word
PS-777776

15 14 13 12 11 10 8 7 5 4 3 2 1 0

Carry
Overflow

Trace trap
General register set 0

Previous mode
Current mode

00=Kernel 01=Supervisor 11=User
(b)

PDP-1130rganization.
(a) General registers.
(b) Processor status
word.

otherwise, it will be a 0. Similarly, the Z bit indicates a zero result and will be set
on if an instruction’s result is zero. (V is for overflow and C is for carry.)

The conditional jump or branch instructions in the PDP-11 use these bits to
determine whether a jump is to be taken. For instance, BNE (branch on negative)
will cause a branch only if the N bit is a 1. As another example, BEQ (branch on
equal) causes a branch only if the Z bit is a 1.

Table 10.21 lists the addressing modes for the PDP-11. The addressing mode
number is placed before the register number in an instruction word and indicates
how the designated register is to be used. Table 10.22 gives the instructions for
the computer.

Table 10.23 shows a sample section of a program for a PDP-11. This is a
subroutine, or subprogram, which reads from a teletypewriter keyboard. There is
a status byte (interface register) at address 177030 in the memory which tells when
the keyboard has a new character. The subprogram places characters in a table
until a period is typed, at which time control is transferred to another subprogram.

1
-
o
(=]
a

NOILdIHOS3a JIMOIWAS JWNVN 3JA0ON S$S34aav

H31NdWODINIW LL-dad 404 SIAOW DNISSIHAAY LZ'0L 318Vl

NOILONYLSNI

L) T ﬂ
3002 4O

S 9

ISP ¥dO ‘ONVY3IdO ITONIS

$30G0J NOLLIONOD NV37008 SNOWLYH3dO $3003 4O

aON39T1

3H10143d3H NOILDNYHLSNI Li1-dAd ¢Z'0lL 319vil

510
COMPUTER
ORGANIZATION

511

PDP-11

NOIi1vHd3dO

NOILONYLSNI

JINOWINW

3002 4O

R
oomomm

T

T T

—‘ T
30092 4O

Sl

300

o]
J d0

0

S

9

L

L

clL

Sl

ISP 'd HdO 40 Y ‘9IS YdO ISP ‘245 4dO :ANWVH3IJO 318n0d

NOLLONYLSNI

XXX + 8pod aseq = apod 4O

T T T T T T T

XXX 3002

L

Z + ucnonasu) ysuelq Jo ssaippe

(195140 X Z) + Dd Pelepdn — D4 Man

‘uo13ed0| 0} youeug
:PAYSHES S| UOIPUOD 4|
uonesol—g :HINvVHE

13

JINOW3INW
INILLNOYENS ANV dWNr

JINOW3NW

aN3931

(panunnuos) 3410143d3Y NOILONYLSNI L L-dAd

¢Z'olL 31gvl

512

18Indwoo Gy/| | 03 saiddy e 'siaINdwod Gy/L1 ‘Ob/LL ‘SE/LL 01 s8liddy ¥ ‘810N

NOILDNYLSNI 3002 dO

SNO3NVTI30SIN

4

zZ N NOLLONYLSNI 3002 dO JINOW3NW

S1i8 3000 NOILIONOD Q310313S 135 = L
siid 3000 NOILIGNOD @3LD313S ¥V31D = 0
T T " 1
Q) _ Alz|H _ 0v2000 = 3Sv8 3002 dO
0 L ¢ € v § Sl

S31ON NOILONYLSNI 3002 dO OINOW3N
1dNYH3ILINI ANV dVHl

513

TABLE 10.23

MEMORY
ADDRESS

514

A PDP-11 PROGRAM SEGMENT

CONTENTS LABEL OP CODE ADDRESS PART COMMENTS

The section shown in Table 10.23 is from an actual assembler listing for a
PDP-11, and all numbers are in octal. The programmer writes all text from the
Label column to the right. Semicolons indicate comments, and everything to the
right of a semicolon is a comment and is ignored by the assembler.

The listing was prepared by the programmer who wrote the assembly-lan-
guage program and then fed it into the assembler program which generated this
listing.

The leftmost column lists locations in the memory, and the next column the
contents of these locations. For instance, TSTB (test byte) has OP code 105767,
and the assembler has read the programmer’s TSTB instruction and converted it
into octal value.

The statement TSTB tests the byte at the address given. If the value there is
negative, it places a 1 in the N bit; if it is zero, a 1 is placed in the Z bit. KSR
designates the address in memory, 177030, where the status byte for the keyboard
is located. The programmer has (in an earlier section of the program) told the
assembler the value of KSR. If the keyboard has a character ready, the sign bit of
the KSR byte will be a 1, causing the N bit to go on.

The next instruction, BPL READ, says branch to READ if N = 0. This
means that if no character is available, the program goes back to READ and looks
again. This continues until a character is ready and N = 1.

The BPL has an OP code of 100. The next byte contains the displacement,
or offset, for the branch in 2s complement form. The address for the branch is
equal to two times the offset byte’s value (375) added to the address of the next
instruction. In this case the offset value is negative, and a branch would go back
to location 524.

When N = 1, the instruction word at location 532 will be executed. This is
a MOVB (move byte) instruction which causes a byte to be moved from KSB,
which is 177024 (the address of the keyboard’s buffer, the value of which the
program has already given to the assembler), to the value pointed to by R,. This
is an example of indirect addressing, where Ry, is used to point to the actual address.
Prior to this section of the program the programmer has loaded R,, with the starting
location of the table in the memory where the input characters are to be stored.

The program now checks to see whether the input character is a period,
which has octal code 256, by comparing it with the character just loaded in the

memory. Notice that indirect addressing is again used. The plus sign causes the
value in R, to be incremented. Only if the character pointed to is equal to 256 will
the Z bit be set to 1.

The BNE (branch on not equal) instruction checks this. If the character is a
period, it transfers control to another program; otherwise, control is transferred
back to the READ, where another character is then read from the keyboard.

The variety and complexities of the PDP-11’s instruction repertoire can be
appreciated only through a study of the manuals for this computer. The preceding
example should point out the kind of efficient programs which can be written for
this computer.

8086 AND 8088 MICROPROCESSORS

10.14 The 8086 and 8088 microprocessors are extensions of Intel’s earlier 8080
microprocessor series. There are a number of changes in the 8086,/8088, the most
obvious being the fact that computations can be performed using 16-bit data versus
8-bit data for the 8080. There are a number of other advantages, however, including
multiplication and division instructions, instruction queuing to improve operation
speed, the ability to address a million bytes of memory, more general registers,
and more instructions and addressing modes.

The 8086 and 8088 chips are part of a series which include the clock generator
and interface chips shown in Fig. 8.22 and a floating-point arithmetic chip (the
8089).

The pin-outs for the 8086 and 8088 are shown in Fig. 10.21. As explained
in Chap. 8, the address and data lines are shared by using time-division multi-
plexing. The principal difference between the 8086 and 8088 lies in the number
of data lines output to the bus. The 8086 has 16 data lines on its bus, and the 8088
has only 8. This is shown by the number of AD (address/data) lines versus A
(address) lines in the pin-out for each chip. The 8086 use 16 of the address lines
for data also, so that ADO to AD15 are used for address and data while the 8088
has only ADO to AD7 for data and uses A8 to A19 for addresses. The internal data
paths on the chips are the same, however; and each can add, subtract, multiply,
or divide 16-bit binary numbers.

The result of the sharing of output lines is that several chips are required to
demultiplex the address data and control lines. One possible configuration is shown
in Fig. 10.22. The output from these extra chips forms the actual bus for the 8086
or 8088. The control lines from the chips are used to strobe the data address and
control signals into the bus interface chips. ‘

An important feature of the 8086 and 8088 microprocessor is the instruction
queue used in each. The 8086/8088 chips read instructions in order from the
memory in advance of their operation, and the instructions are placed in a queue
consisting of a set of flip-flop registers. This speeds up operation because the
processor can continue executing a time-consuming instruction (multiplication, for
example) and at the same time read instructions from the memory of the processor.
Then the processor can execute fast instructions (shift or test instructions, for
example) from the queue at a speed faster than memory cycle times. Logic is
supplied so that if the computer branches (jumps), the instructions in the queue are
discarded if necessary.

5185

(RQ/GTO)
(RQ/GT1)
(LOCK)
(52)

(S1)

(S0)

(QS0)
(Qs1)

FIGURE 10.21

Pin-outs for 8086 and
8088 processors.

request
lines

Control lines

Local bus

Address lines

FIGURE 10.22

8086 and 8088 bus
setup.

Data lines
516

Interrupt

Minimum
mode

r system
bus

The 8086/8088 pair each have a special output pin, the MN/MX pin. When
this pin is connected to TSV, the processor is placed in a minimum mode; when
it is connected to OV, the processor is placed in a maximum mode. When in the
minimum mode, the processor is used in single processor systems. In the maximum
mode, several processors can be used with an 8288 bus controller which provides
a special multibus architecture for multiprocessor systems. The maximum mode is
for large arrays of memory, processors, and I/O devices.

A block diagram of the registers of the 8086 and 8088 is shown in Fig.
10.23. Notice eight general registers.

The 8086/8088 processors have a number of addressing modes. Addresses
are 20 bits in length. Each address is formed in two sections which are then added:
a segment address and an offset. The segment address is a full 20 bits, and the
offset address is 16 bits.

There are four segment registers, CS, DS, SS, and ES, each containing 16
bits. These registers must be loaded by the program to starting values because the
contents of one of these registers are automatically added to each address as it is
generated. The contents of the 16-bit segment registers are first shifted left four
binary places, however. (This is the equivalent of multiplying the contenis of the
registers by 16.) Loading the segment registers with Os would simply place the
program and stacks in the first 2'® words in memory and would effectively remove
this feature for simple programs.

When a program is operated, the content of the program counter is auto-
matically added to CS to form each instruction address. Data offsets are automat-
ically added to DS (or ES in special cases), and stack offsets are automatically
added to SS. Setting the CS, DS, and SS registers to addresses in different parts of
a large memory would cause the instructions, data, and stacks to be in different
parts of the memory. Setting the CS, S§§, and DS registers to the same number
would place everything in the same part of memory. Once the segment registers
are set, the processor simply generates 16-bit offset addresses in a conventional
manner from the instruction words while adding the segment register to each ad-
dress to form the final 20-bit address. If a program really needed 2%° addresses, it
would be necessary to change the segment registers from time to time to utilize
the entire memory.

In effect, the 8086 and 8088 generate conventional 16-bit (offset) addresses
by using instruction words and then add the contents of a 20-bit number to each
of these offsets to form a 20-bit final address.

Quite a number of addressing modes are used to form the offsets in the
8086,/8088 chips. Operands can be in general registers, memory, or 1/O ports,
and immediate addressing is provided. When 20-bit addresses are generated, the
second byte in an instruction word contains the information as to how the 16-bit
offset or effective address part of the address is to be calculated. (The first 3 and
last 2 bits in this byte provide that information.) In general, this section of the
address is formed by summing the contents of a displacement (part of the instruction
word), an index register, and a base register. Any combination of these three can
be used. And this implements, for example, direct addressing, register indirect
addressing, and based indexed addressing (summing the base register, index reg-
ister, and displacement).

The segment registers make it possible to address a 22°-word memory while

517

520

COMPUTER
ORGANIZATION

68000 MICROPROCESSOR

10.18 The 68000 microprocessor is a semiconductor chip with a number of
support chips such as I/O processors, a floating-point arithmetic chip, and bus
handler chips. The 68000 has 16-bit data paths on its system bus and performs 32-
bit arithmetic and logic operations internally. The 68000 microprocessor can di-
rectly address 16 Mbytes of memory, having a 24-bit address bus. There are 14
addressing modes and 56 types of instructions. The 1/0O is memory-mapped.

Chapter 8 showed a drawing of the 68000 bus and the timing signals for
reads and writes on the bus. The bus is asynchronous in order to accommodate
both slow and fast memory and I/O devices.

The basic registers in the 68000 are shown in Fig. 10.25. The registers are
32 bits, and there are eight data registers along with seven address registers and a
program counter. There are actually two stack pointers. A status bit determines
whether the 68000 is in the supervisor (operating system) mode or user mode; this
bit also determines which of the two stack pointers are in use. The status register
is shown in Fig. 10.25 and contains 5 bits for condition codes.

The 68000 supervisor and user modes are an important feature. There are
privileged instructions which can be executed in supervisor mode, but not in user
mode. When the supervisor-user mode select bit is a 1, the 68000 uses the super-
visor stack pointer and the privileged instructions are available. When the select
bit is a 0, the user stack pointer is employed, and certain instructions will not
execute.

Figure 10.26 shows that data are organized into bits, bytes, words, and long
words and shows how these are placed in the memory which has 8 bits (1 byte) at
each address. Instruction words can be from one word (16 bits) to four words in
length.

Stacks in the 68000 go from high memory to low memory. So the stack
pointer is decremented when data are pushed into a stack and incremented when
data are popped from a stack.

Let us examine a particular instruction to understand how the addressing
operates. The ANDI (for AND immediate) has the following instruction word
format.

15 14 13 12 11 10 9 8 7 6 5 4 3 210

o 0 0 0 0 010 Size Mode Address
' register

Word data (16) Byte data (8)

Long word (32 bits)

The OP-code part of this instruction is 02,5. This tells the microprocessor
that the instruction is ANDI. The function of this instruction is to AND the im-
mediate data which follow the first 16 bits of the instruction (word), which is called
the source, with the destination operand and to place the result in the destination.
The number of bits in an ANDI instruction word depends on the 2 bits in
the size section. If these are 00, the operation is a byte operation and the instruction

- Q@
N [=¥e]
i =1
8%
w
O
@]
o
o
@]
oc
o
=
91Aq 435N 31AQ WiaISAS
19151604
smeis I
131Unod 0 L8 St :
wetbouy
Alied sJa1ulod
MO|JI8AQ speisom)
o107 omwnOo
1
anneban LonIpuoy
pusix3 sia1s16a4
J oisew ssaippe
1dnuiaiu| uanag
alels
Josiasadng
apow aseJ]
v 8 Ol €L Gl 49151631
A- a elep

Y Y
alAq Jasny 31AQ waisAg 1613

68000 programmable

registers.

FIGURE 10.25

522

COMPUTER
ORGANIZATION

FIGURE 10.26

Bit data
1 byte = 8 bits

5 4

6

' Integér data
1 byte =8 bits

14 13 12 11 10 9 8 7 6 5 4 ‘ 3 ; 2 1 0

1 Word = 16 bits
15141312111098765‘43210

1 Long word = 32 bits

10 9 8 7 6 5

15 14 13 12 11 4 3 2 1 0

Addresses
1 Address = 32 bits
15 14 13 12 109876

MSB = Most significant bit
LSB = Least significant bit

Organization of data
in memory for 68000.

word is two 16-bit words in length with the immediate data in bits 7 to O of the
second word. If the size bits are 01, the instruction word is again 32 bits in length,
but the immediate operand is the entire 16 bits in the second word. If the size bits
are 10, then ANDI has a 32-bit-long word for its immediate data and the instruction
word is 48 bits in length.

Mode Generation 523
Register direct addressing
Data Register Direct EA = Dn
Address Register Direct EA = An
Absolute data addressing
Absolute Short EA = (Next Word)
Absolue Long EA = (Next Two Words)}
Program counter relative
addressing
Relative with Offset EA = (PC) + dyq
Relative with index and Offset EA = (PC) + (Xn) + dy Notes:
Register indirect addressing EA = Effective Aeress
Register Indirect EA = (An) An = Address Register
Postincrement Register Indirect EA = (An), An — An + N Dn = Data Register) .
Predecrement Register Indirect An «— An — N, EA = {An) Xn = Address or Data Register used as Index Register
Register Indirect with Offset EA = (An) + dyq SR = Status Register
indexed Register Indirect with EA = (An} + (Xn) + dy PC = Program Counter
Offset dy = 8-bit Offset (displacement)
. . d,s = 16-bit Offset (displacement)
Immediate data addressing N = 1 for Byte, 2 for Words, and 4 for Long Words.
Immediate DATA = Next Word(s) If An is the stack pointer and the operand size
Quick Immediate Inherent Data byte, N = 2 to keep the stack pointer on a word
Implied addressing boundary.
Implied Register EA = SR, USP, SP, PC () = Contents of
« = Replaces

FIGURE 10.27

Addressing modes
for 68000.

The destination operand is determined by the mode bits and address register
bits. If the mode bits are 000, then the destination is the register given by the
address register bits. If these are 010, for example, then data register 2 (refer to
Fig. 10.25) will be the destination register and the part of that register used (byte
word or long word) will be determined by the size section. If, for example, the
data register used is 010 and the size bits are 00, bits 7 to O in data register 2 will
be ANDed with bits 7 to O in the second word in the instruction, and the result is
placed in bits 7 to O of data register 2. ‘

If the mode bits are 010, then the address register given by the address register
bits in the instruction word will contain the address of the (destination) data in
memory. For example, if the mode bits are 010, the address register bits are 011;
then address register 3 will contain the address of the operand. So if address register
3 contains 01434, then the operand will be at that location in memory. If the size
bits are 00, then bits 7 to O of that location in memory will be used for the AND,
and the result placed in these bits. If the size bits are 01, then the entire word in
location 0143,4 will be ANDed with the 16 bits in the second word of the instruc-
tion, and the result placed in memory location 0143 .

The instruction repertoire is described in what Motorola calls its register
transfer language (as in Chap. 9). In their system, (4,) means, ‘“The contents of
A, gives the location in memory of the operand.”” (The n in A, is given by the
address register bits. The register A, is frequently called the pointer because it
points to the operand.) The notation A,@ + is called ‘‘address register indirect
with post-increment’’ and A,— @ is called ‘‘address register indirect with prede-
crement.”’

The notation (A, —) means, ‘‘Decrement A, and then use the result as the
address of the operand.’’ The notation (A,)+ means, ‘‘Use the contents of A, to
determine the location in memory and then increment.”” For (A4,)+ and (A4,—),
the number in A, is incremented or decremented by 1, 2, or 4 depending on whether
the instruction is a byte, word, or long word instruction.

The notation A,@ is also used to mean, ‘‘A, contains the address of the
operand.’’ This is the same as (A4,) but leads to the notation (A,)@ which means,
‘‘Take the address in A,, go to that address in memory, and at that address find

The following register transfer language definitions are used for the operation description
in the details of the instruction set.

OPERANDS
An address register sSSP supervisor stack pointer
Dn data register usp user stack pointer
Rn any data or address register sP

active stack pointer {equivalent to
progranf counter A7)

PC
SR status register extend operand (from condition
CCR

condition codes (low order byte of codes)
status register} zero condition code
v overflow condition code

Immediate Data — immediate data from the instruction

— address displacement Destination destination location
Source — source location Vector location of exception vector
SUBFIELDS AND QUALIFIERS

selects a single bit of the operand
selects a subfield of an operand

< bit > OF < operand >

< operand >[< bit number >:< bit
number >

{< operand >)

< operand > 101

the contents of the referenced location

the operand is binary coded decimat; operations
are to be performed in decimal.

the register indirect operator which indicates that
the operand register points to the memory to-
cation of the instruction operand. The |

< operand > @ < mode >

ANDI AND tmmediate

Operation: Immediate Data A (Destination) — Destination

Assembler syntax: AND! # < data >, < ea >

Attributes: Size = (Byte, Word, Long)

Description: AND the immediate data to the destination operand and store the result
in the destination location. The size of the operation may be specified to
be byte, word, or long. The size of the immediate data matches the
operation size

Condition codes X N Z V C

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Always cleared.

Always cleared.

Not affected.

XO<N2Z2

Instruction format

1 14 13 12 11 10 9 8 76 5 4 3 210

mode qualifiers are —, +, (d) and (d, ix); these
are explained in Chapter 2.

OPERATIONS
Operations are grouped into binary, unary, and other.

Binary These operations are written < operand > < op > < operand > where

< op > is one of the following:

the left operand is moved to the location specified by the right operand

the contents of the two operands are exchanged

the operands are added

the right operand is subtracted from the left operand

the operands are muitiplied

the first operand is divided by the second operand

the operands are logically ANDed

the operands are logically ORed

the operands are logically exclusively ORed

relational test, true if left operand is less than right operand

relational test, true if left operand is not equal to right operand

the left operand is shifted or rotated by the number of positions specified
by the right operand

VA@E» T 1+ 1]

shifted by
rotated by

UNARY
the operand is logically complemented
the operand is sign extended, all bits of the upper half
are made equal to high order bit of the lower half
the operand is compared to 0, the resuits are used to
set the condition codes

MULS Signed Multiply

Operation: (Source)*(Destination) — Destination

~ < operand >
< operand > sign-extended

< operand > tested

Assembler syntax: MULS < ea >, Dn

Attributes: Size = {(Word)
Multiply two signed 16-bit operands yielding a 32-bit signed result. The
operation is performed using signed arithmetic. A register operand is
taken from the low order word; the upper word is unused. All 32 bits of
the product are saved in the destination data register.

Description:

X N Z VvV C

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Always cleared.

Always cleared

Not affected.

Condition codes

XO<KN2

Instruction format
543 210

Effective Address
Mode Register

15 14 13 12 1 10 9 8 7 6

1] 1] 0 0| Register

Instruction fields .
Register field Specifies one of the data registers. This field always specifies the des-
tination.
Effective address field Specifies the source operand. Only data addressing modes are
allowed as shown:

Addressing Addressing

Mode Mode Register Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An — - Abs.W m 000

(An) 010 register number Abs.L m 001

(An)+ on register number d(PC) m 070

-{An) 100 register number d(PC, Xi) m 011

d{An) 101 register number Imm m 100

Effective Address

O[O ojojoro Mode Register

=)

Size

Word Data {16 bits)' Byte Data (8 bits)

Long Data (32 bits, including previous word)

Instruction fields
Size field Specifies the size of the operation:
00 byte operation.
01 word operation.
10 long operation.
Effective Address field Specifies the destinati Pt
ing modes are allowed as shown:

d. Only data alterable address-

Addressing Addressing

Mode Mode Register Mode Mode Register
DOn 000 register number d(An, Xi) 110 register number
An Abs.W 1 000

{An) 010 register number Abs.L "M 001

(An)+ oM register number d(PC) — —

- (An} 100 register number d(PC, Xi} _ -

d{An) 101 register number Imm — -

Immediate field (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data is the entire immediate word.

If size = 10, then the data is the next two immediate words.
Bco Branch Conditionally
Operation: If (condition true) then PC + d — PC

Assembler syntax: Bcc < label >

Attributes: Size = (Byte, Word}

Description: If the specified condition is met, program execution continues at location
(PC) + displ Di is 8 twos plement integer which
counts the relative distance in bytes. The value in PC is the current in-
struction location plus two. if the 8-bit displacement in the instruction
waord is zero, then the 16-bit displ (word i y following
the instruction) is used. “cc” may specify the following conditions:

CC carry clear 0100 C LS loworsame 0011 C+Z_
CC carry set 0101 C LT less than 1101 N-V+N-V
EQ equal om z Ml minus 1017 N

GE greater or equat 1100 N-V+N-V__ NE not equal 0110 2

GT greater than 1110 NV-Z+NV-Z PL plus 1010 N

Hi high 0010 CZ _ VC overflow clear 1000 V

LE less or equal 1M1 Z+NV+NV VS overflowset 1001 V

Condition codes: Not affected.

Instruction format

15 14 13 12 11 10 98

o]+ [[o] conan

16-bit Displacement if 8-bit Dispiacement = 0

7 6543210
8-bit Disp

Instruction fieids
Condition field One of fourteen conditions discussed in description.
8-bit displacement fieid Twos complement integer specifying the relative distance (in
bytes) between the branch instruction and the next instruction to be executed if the
condition is met.
16-bit displacement field Allows a larger displacement than 8 bits. Used only if the
displacement is equal to zero.
Note: A short branch to the immediately following instruction cannot be done be-
cause it would result in a zero offset which forces a word branch instruction
definition.

cwmp Compare
Operation: (D)~(S)
Assembler syntax: CMP < ea >, Dn
Attributes: Size = (Byte, Word, Long)
Description: Subtract the source op d from the d operand and set the

condition codes according to the result; the destination location is not
changed. The size of the operation may be specified to be byte, word,
or long.

X N 2 V C

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cieared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Not affected.

Condition codes

XO<N2Z

Instruction format

15 14 13 12 1 .10 9 8 7 6 5 4 3 210
. Effective Address
10| 1] 1] Register | Op-Mode Mode Register
Instructvon fields
field Specifies the di data register.
0p~Mode field
Byte Word Long Operation
000 001 010 (< Dn>)-(<ea>)

Effective address field Specifies the source operand. All addressing modes are al-
lowed as shown:

DIVS Signed Divide

Operation: {Destination)/{Source) ~» Destination

Assembler syntax: DIVS < ea >, Dn

Attributes: Size = (Word)
Description: Divide the destmatnon operand bv tho source op«and and store the re-
sult in the The is a long operand (32
bits) and the source operand is a word operand (16 bits). The operation
is performed using signed arithmetic. The result is a 32-bit result such
that:
1. The quotient is in the lower word (least significant 16-bits).
2. The remainder is in the upper word {most significant 16-bits).
The sign of the remainder is always the same as the dividend unless the
remainder is equal to zero. Two specia! conditions may arise:
1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruc-
tion. If overflow is detected, the condition is flagged but the operands
are unaffected.

X N zZ Vv C

Set if the quotient is negative. Cieared otherwise. Undefined if overflow.
Set if the quotient is zero. Cleared otherwise. Undefined if overflow.

Set if division overflow is detected. Cleared otherwise.

Always cleared.

Not affected.

Condition codes

XO<KNZ

Instruction format

5 14 13 1211109 8 71 8 543 210
. Effective Address
1/10| 0| 0| Register | 1 [1|1 Mode Register

Instruction fields
Regmer field Specified any of the eight data registers. This field always specifies the
rand.

Addressing Addressing

Mode Mode Register Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An* 001 register number Abs.W m 000

(An) 010 register number Abs.L m 001

{An) + on register number d(PC) 111 010

-{An) 100 register number d{PC, Xi} 111 o1t

di(An) 101 register number imm Mt 100

*Word and Long only.

Note: CMPA is used when the destination is an address register. CMP| is used when
the source is immediate dqla CMPM is used fqr memory to memory compares.

Most S autor y make this di
JSR Jump to Subroutine
Operation: PC — - (SP); Destination — PC
Assembler syntax: JSR < ea >
Attributes: Unsized
Description: The long word address of the instruction immediately following the JSR
instruction is pushed onto the system stack. Program execution then
i at the add d in the instruction.
Condition codes: Not affected.

Instruction format
5 43 210

Eftective Address
Mode Register

instruction fields
Effective address field Specifies the address of the next instruction. Only control ad-
dressing modes are allowed as shown:

Addressing Addressing

Mode Mode Register Mode Mode Register
Dn — —_ d(An, Xi) 10 register number
An — -— Abs.W m 000
(An) 010 register number Abs.L m 001

(An) + — — d{PC) m 010

—(An} — - d(PC, Xi) m on

d(An) 101 register number Imm

o
Effective Address field Specifies the source op

d. Only data add ing modes are
allowed as shown:
Addressing Addresing
Mode Mode Register Mode Mode Register
on 000 register number d{An, Xi) 110

register number
An —_ - Abs.W 11 000

(An} 010 register number Abs.L m 001
(An) + on register number d(PC) m 010
- (An) 100 register number d(PC, Xi) m on
d{An) 101 register number fmm m 100

Note: Overflow occurs if the quotient is larger than a 16-bit signed integer.

RTS Retura from Subrouting
Operation: (SP) + — PC

Assembler syntax: RTS

Attributes: Unsized

Description: The program counter is pulled from the stack. The previous program
counter is lost.

Condition codes: Not affected.

Instruction format

onpoannEnnnnnnnn

FIGURE 10.28

Selected instructions
for 68000.

525

Operation: (Destination) ~ (Source) — Destination

Assembler: SUB < ea >, Dn

Syntax: SUB Dn, < ea >

Attributes: Size = (Byte, Word, Long)

Description: the source d from the d operand and store the
result in the destination. The size of the operation may be specified to
be byte, word, or long. The mode of the instruction indicates which op-
erand is the source and which is the destination as well as the operand
size.

Condition codes X N Z Vv C

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.

Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Set the same as the carry bit.

xOo<NZ

Instruction format

B 141312 1109 876 543 210
. Effective Address
110} 01 1| Register | Op-Mode Mode Register

Instruction fields
Register field Specifies any of the eight data registers.
Op-Mode field

Byte Word Long Operation

000 001 010
100 101 110

(<Dn>)-(<ea>)—<Dn>
(<ea >)-(<Dn>)— < ea>

Effective address field Determines addressing mode:

ADD Add Binary

Operation: (Source) + (Destination) — Destination

Assembler: ADD < ea >, Dn

Syntax: ADD Dn, < ea >

Attributes: Size = (Byte, Word, Long)

Description: Add the source operand tu the destination operand, and store the result

in the destination location. The size of the operation may be specified to
be byte, word, or long. The mode of the instruction indicates which op-
erand is the source and which is the destination as well as the operand
size.

X N Z VvV C

Condition codes

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Setif a carry is generated. Cleared otherwise.
X Set the same as the carry bit.
Instruction format
15 14 13 12 11109 8 7 6 543 210
. Effective Address
11110} 1! Register | Op-Mode Mode Register
Instruction fields
Register field Specifies any of the eight data registers.
Op-Mode field
Byte Word Long Operation .
000 001 010 (<Dn >)+(< ea >)— < Dn>
100 101 110 (<ea>)+{<Dn>)— <ea>

Effective address field Determines addressing mode:

(a) 1f the location specified is a source operand, then all ing modes are all (a} If the location specified is a source operand, then ali addressing modes are allowed
as shown: as shown:
Addressing Addressing Addressing Addressing
Mode Mode Register Mode Mode Register Mode Mode Register Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number Dn 000 register number d(An, Xi) 110 register number
An® 001 register number Abs.W m 000 An* 001 register number Abs.W m 000
{An) 010 register number Abs.L 11 001 {An} 010 register number Abs.L m 001
(An) + omn register number d{PC) m 010 (An) + 011 register number d(PC) m 010
—-{An) 100 register number d(PC, Xi) 1M1 on —(An) 100 register number d(PC, Xi) m on
d(An) 10 register number Imm 1" 100 d{An) 101 register number fmm m 100

if the location specified is a destination operand, then only alterable memory address-
ing modes are allowed as shown:

Addressing Addressing

Mode Mode Register Mode Mode Register
Dn - _ d(An, Xi) 110 register number
An - - Abs.W m 000

(An) 010 register number Abs.L 1" 001

(An) + on register number d{PC) - -

~(An) 100 register number d(PC, Xi) - -

d(An) 101 register number imm —_ —

Notes: 1. If the destination is a data register, then it cannot be specified by using the
destination < ea > mode, but must use the destination Dn mode instead.

2. SUBA is used when the destination is an address register. SUBI and SUBQ
are used when the source is immediate data. Most assemblers automatically
make this distinction.

3. For byte size data register direct is not allowed. .

FIGURE 10.28
(Cont.)

() If the location specified is a destination operand, then only alterable memory ad-
dressing modes are allowed as shown:

Addressing Addressing

Mode Mode Register Mode Mode Register
On - - d{An, Xi} 110 register number
An —_ -_ Abs.W m 000

(An) 010 register number Abs.L m 001

(An) + o register number d{PC) - —_

~{An) 100 register number d(PC, Xi) - -

diAn) 101 gegister number Imm - —

Notes: 1. If the destination is a data register, then it cannot be specified by using the

destination < ea > mode, but must use the destination Dn mode instead.
2. ADDA is used when the destination is an address register. ADDI and ADDQ
are used when the source is immediate data. Most assemblers automatically
make this distinction.
3. Word and Long only.

puno.i9 pue (A G+) 1amog ano ‘A
ssaJppe jesaydiiad pijeA YdA
$SaUppe AJOWaW pijeA YIWA
indino (320)2) ajqeuy T3
abpajmoudoe juesb sng Xovog
1uelb sng g
1sanbai sng yg
301D AT
S3JIAAP [BUIAIXA 13534 10 1055300.d 1353y 13s3H
10ss3204d 1|BH LIVH
Jousa sng I'EL:]
sisanbas 1dnuaiul | Z1dl ‘L1di‘01d!
s1ndino (snjeis) apod uoiouny 204194004
abpajmoudoe Jaysues) ereq Mov.ia
$3qO.J1s elep 1amoj ‘Jaddn sai ‘san
[013U0D 3}JM /Peay T MmN
390.J3s ssaIppy sy
snq ssaippy €Cv-lv
snq eyeqg G10-00

uondisag awep uid

FIGURE 10.29

Pin-out for 68000.

527

528

COMPUTER
ORGANIZATION

the address of the operand.’’ In effect, for (A,)@, the number in A, is the address
of the address of the operand.'*

Figure 10.27 shows the addressing modes for the 68000. These cover most
of the conventional modes for addressing and offer considerable options to the
programmer.

Several selected instructions from the 68000’s large instruction set are shown
in Fig. 10.28. A large number of instructions are available, including most con-
ventional instructions. '

Notice that addresses are generated in 32-bit registers and are complete ad-
dresses. The pin-out in Fig. 10.29 shows that all 24 address lines and 16-bit data
lines are externally available. And there is no multiplexing of these lines because
the 68000 has a 64-pin package which provides for the necessary connections.

The 68000 microprocessor chip and its support chips provide a powerful
instruction repertoire and high-speed operation of programs. They are widely used
in everything from personal computers to communication and control systems.

QUESTIONS

10.1 Discuss the advantages and disadvantages of the following addressing
strategies in a microcomputer: (a) Paging, (b) indirect addressing, (c) index reg-
isters.

10.2 Describe some advantages and disadvantages of multiple-accumulator
(general-purpose registers) versus single-accumulator computer architecture. In-
clude effects on instruction word length, convenience in programming, etc.

10.3 (a) The 6100 series uses the original paging scheme for addressing. The
PDP-11 and other computers use a relative address or sliding page. Discuss the
advantages and disadvantages of these two techniques.

(b) What is the obvious problem in indirect addressing of 8K or larger
memories which arises in the 6100 but does not occur for 16-bit-word computers
such as the NOVA, PDP-11, or Varian?

10.4 Discuss the desirability of the following computer architectural features
for a microcomputer to be used as a traffic light controller: (a) Paging of memory,
(b) floating-point arithmetic, (c) indirect addressing.

10.8 The following is a short program in assembly language for the 6100:

700
CLA CLL /CLEARS AC AND LINK
TAD DATI

GO, ISZ DAT2
IMP GO
RAL /RIGHT SHIFT AC AND LINK
IMP GO

DATI, ¢¢77

DAT2, ¢

$

"“Alternate ways to write (4,)@ would be A,@@ or).

After this program has been assembled and loaded, it appears as follows in memory 529
(all digits are octal), except that the contents of two addresses in memory need to
be filled in:
ADDRESS NUMBER CONTENTS
9700
9701
0702 2307
0703 5302
9704 7004
9705 5302 QUESTIONS
9706 0077
p797 P00
Supply the contents of (octal) locations 700 and 701 in memory.
10.6 The program in Question 10.5 rotates a sequence of Os and ls through
the accumulator link.
(a) How many Os and how many 1s? In what order?
(b) How many instructions must be executed for a complete cycle of a
given 0 and 1 pattern?
10.7 A microcomputer has a bus with a single INTERRUPT line which an
external device is to raise when it wishes to be serviced. The bus is controlled by
the microcomputer’s CPU chip. Explain the CPU’s problem in determining which
input-output device(s) generated an interrupt, and discuss two possible solutions.
10.8 The following is a short program for the 6800 which was written to com-
pute Y = 32(9 — 7) and store it. The programmer then converted the program
into hexadecimal and is now prepared to enter it into the computer. There are
several mistakes in the program. Find as many as possible and explain each.
ADDRESS OP OPER LABEL MNEMONICS OPERAND COMMENTS
01 0200 4F START CLRA . ; CLEAR REGISTER A
02 0201 86 OE LDA X ; LOAD X INTO REGISTER A
03 0203 43 COMA ; COMPLEMENT X
04 0204 8B 09 ADDA(IM) #09 ; ADD 9
05 0206 CE 05 LDX(IM) #05 ; LOAD INDEX REGISTER WITH 5
06 0208 49 LOOP ROLA ; ROTATE LEFT 1 BIT (MULTIPLY BY
2)
07 0209 09 DEX ; DECREMENT INDEX REGISTER
08 020A 26 FD BNE LOOP ; ROTATE AGAIN IF INDEX
REGISTER # 0
09 020C 97 OF STAA Y ; AFTER MULTIPLYING BY 25 = 32,
: STORE THE RESULTIN Y
10 020E 07 X DATA 1 BYTE
11 020F 00 Y DATA 1 BYTE ; DATA IN THIS LOCATION WILL BE

REPLACED BY VALUE OF Y

10.9 A short program has been written for the 6800 to determine the number of
bytes in a table which have Is in their sign bits. The number of elements in the
table is stored at location 50, and the table begins in location 60. The number of
bytes with 1 in the sign bit is to be stored in location 51. Modify this program so
that the number of nonzero bytes with a 0 in the sign bit is stored in location 55.

COMPUTER
ORGANIZATION

LDX #860 /LOAD 1 REGISTER

CLRB
LOOKN LDAA X /CHECK FOR NEGATIVES
BPL HOUS
INCB
HOUS INX
DEC $50
BNE LOOKN /DONE?
STAB $51

10.10 A two-address computer has a large IC memory with a 0.5-pus memory
cycle time and a small high-speed memory with a 0.25-ws memory cycle time. An
addition instruction word looks like this:

ADD Ist 2d
address address

The first address refers to the small high-speed memory and the second address to
the large memory. The sum is placed in the high-speed memory at the first address.
How long will it take to perform an addition instruction? Why?

10.11 Using the index instructions given in Sec. 10.9, write a program that adds
40 numbers located in the memory, starting at address 200 and storing the sum in
register 300.

10.12 If we use three binary digits in the instruction word to indicate which
index register is used, or if one is to be used, then how many index registers can
be used in the machine?

10.13 Modify the program in Sec. 10.9 so that the numbers located at memory
addresses 353 through 546 are added and stored at address 600.

10.14 Modify the program in Sec. 10.9 so that the numbers located at addresses
300 through 305 are multiplied and the product is stored at address 310.

10.15 The use of paging enables the relocation of programs in the memory
without extensive modification of the addresses in the program. Explain why.

10.16 Explain how paging and indirect addressing can be useful in relocating
subprograms when a program is rewritten. What are some disadvantages of paging
and indirect addressing?

10.17 Discuss the architecture of the 6800 versus the 8080 microprocessors.
10.18 Compare the PDP-11 addressing to the 8080 addressing modes.

10.19 Explain how paging as an addressing technique can he useful in relocating
programs. Then explain how small pages can sometimes force programmers to
‘‘think in segments.”’ Are the above characteristics desirable or undesirable?

10.20 Explain the addressing of pages in the 6100 series and the displacement-
plus-instruction-location addressing technique used by the PDP-11. Why do you
think systems architects have elected to use these systems?

10.21 The following is a section of program and memory contents from an
assembly listing for a 6100. The programmer who wrote this contends that after
the instruction at location 2554 is executed, the location 2564 in memory will
contain the difference A — B of the numbers A and B at locations 260 and 2053g.
Is the programmer correct? Give the reason for your answer, explaining the program
operation.

250

0250 7300 CLA CLL

$251 1657 TAD 1 F

@252 7949 CMA

$253 1260 TAD A

9254 3256 DCA C

$255 7492 HLT

#256 Pop4 C, Y

#1257 2053 F, 2053

3260 0005 A, 5

2053 ?gg6 2053 B, 6
—— N—— \ v
memory contents program written
address of in assembly

memory language

10.22 Sketch, describe, and discuss the merits of one of the machine architec-
tures that have been presented, or of any other machine with which you are familiar
(or with which you would like to be familiar—including any of your own ‘‘ideal”’
designs).

10.23 A real-time system for manufacturing control is to be constructed using a
computer. The system is to perform two functions:

(a) The computer has to automatically test cameras as they are manufac-
tured. This involves, among other things, reading 1000 values each second from
several A-to-D converters and checking to see whether the values are within pre-
scribed limits.

(b) The computer has to service four terminals which run inquiries against
the data base maintained on the cameras, and it also has to rur some Fortran and
Cobol programs.

Give an architecture for the computer to be used.

10.24 Show how a recursive subroutine call can erase the return location planted
at the beginning of a subroutine when the 6100 JMS instruction is used.

10.25 Show how the 6800 microprocessor subroutine call will not destroy the
return address in a recursive subroutine call because of the use of the stack.

10.26 Show how the 8080 jump to a subroutine will not destroy the return
location in a recursive subroutine call because of the stack.

531

QUESTIONS

532

10.27 Write a program in assembly language for the 6800 microprocessor which
will multiply ¥ by 16 and then subtract 15 from the result. (Ignore overflows.)

10.28 Write a program in assembly language for the 8080 microprocessor which
will multiply a number X by 32 and then subtract 14 from the result. (Ignore
overflows.)

10.29 Write a subroutine for the 8080 microprocessor which will double the
number in the accumulator and then subtract 5. (Ignore overflows.)

10.30 Write a subroutine for the 6800 which will add accumulator A to accu-
mulator B, store the result in accumulator A, and then subtract 12 from this result,
storing that in accumulator B. (Ignore overflows.)

10.31 Write a subroutine call for the 6800 which will utilize the subroutine
written in Question 10.30. Betore this subroutine call, place 13 in accumulator A
and 23 in accumulator B.

10.32 Discuss PDP-11 addressing [where the addressing mode (or modes) is
carried in the address section] versus placing that information in the OP code.

10.33 Show the mode information in the two 3-bit fields in a PDP-11 instruction
word which uses both source and destination registers in a direct addressing mode.

10.34 Write a program for the PDP-11 which will add the number in R, to the
number in R; and then store this number at location 634 in the memory.

10.35 Why is it not a good idea to store data at location 0 in the 6100 memory?

10.36 Explain why placing often used data in the first 256 words of the memory
in a 6800 will shorten some instruction words.

10.37 Explain the following sentence: The 6800 has one index register, the
PDP-11 can use any general register as an index register, and the 8080 has no
index register.

10.38 Explain how the auto-increment and auto-decrement instruction modes in
the PDP-11 can be useful in processing tables.

10.39 In the 8080 an interrupt is serviced as follows. The device which is being
serviced places on the data lines of the 8080 bus an instruction word which is a
special instruction, called RST. Three bits of this instruction give the address of
the next instruction to be executed. The interrupting device places the correct 3
bits in the section of the RST instruction on the bus. and the 8080 then takes the
next instruction from that focation. (See OP-code description of RST.) In that
location is 4 jump to the subroutine which actually services the device generating
the interrupt. Discuss the advantages and disadvantages of this procedure.

10.40 The IBM series of computers uses a priority delegation scheme where
interrupt devices are interconnected as shown below. When an interrupt service is
issued, the leftmost point of the *‘daisy-chain’’ wire is raised. If a device wishes
to be serviced, it does not forward this 1 to the device on the right. If it does not
wish to be serviced. it forwards this | to the device on the right. Each device in
turn makes this decision, either passing the 1 to the right or passing a 0. (A O on

